Pre-Board 2025

Maximum Marks: 80

Time: 3 Hours

General Instructions:

1. This question paper has 5 sections A-E

- **2**. Section A has 20 MCQs carrying 1 mark each.
- **3**. Section B has 5 questions carrying 02 marks each.
- **4**. Section C has 6 questions carrying 03 marks each.
- **5**. Section D has 4 questions carrying 05 marks each.
- **6**. Section E has 3 case based integrated units of assessment (04 marks each) with sub parts of the values 1, 1 and 2 marks each respectively.
- 7. All questions are compulsory. However internal choice in 2 questions of 5 marks, 2 questions of 3 marks and 2 questions of 2 marks has been provided. An internal choice has been provided in 2 marks questions of section E.
- 8. Draw neat figures wherever required.

Q.	SECTION-A	Mar
1	Which of the following is not irrational?	<u>K5</u>
1.	(A) $(3 + \sqrt{7})$ (B) $(3 - \sqrt{7})$ (C) $(3 + \sqrt{7})$ (D) $3\sqrt{7}$	L
2	The product of a non-zero rational and an irrational number is	1
	(A) always rational (B) rational or irrational (C) always irrational (D) zero	
3.	The number of zeroes, the polynomial $p(x) = (x - 2)^2 - 4$ can have, is	1
	(A)1 (B) 2 (C) $\vec{3}$ (D) $\vec{0}$	
4.	If a pair of linear equations is consistent, then the lines will be	1
	(A) parallel (B) always coincident	
	(C) intersecting or coincident (D) always intersecting	
5.	$(\sec A + \tan A) (1 - \sin A) =$	1
	$(A) \sec A \qquad (B) \sin A \qquad (C) \csc A \qquad (D) \cos A$	
6.	The roots of quadratic equation $2x^2 + x + 4 = 0$ are: (A) Desider and reservices (D) Detty Desider	1
	(A) Positive and negative (B) Both Positive	
7	(C) Both Negative (D) No real roots The distance of the point $P(-6, 8)$ from the origin is	
/.	(A) 10 units (B) $2\sqrt{7}$ units (C) 8 units (D) 6 units	1
8	The fourth vertex D of a parallelogram ABCD whose three vertices are $A(-2, 3) B(6, 7)$	1
0.	and $C(8, 3)$ is	-
	(A) $(0, 1)$ (B) $(0, -1)$ (C) $(-1, 0)$ (D) $(1, 0)$	
9.	A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O at a	1
	point Q so that $OQ = 12$ cm. Length PQ is :	
	(A) 12 cm (B) 13 cm (C) 8.5 cm (D) $\sqrt{119}$ cm	
10.	D and E are the midpoints of side AB and AC of a triangle ABC, respectively and $BC = 6$	1
	cm. If $DE \parallel BC$, then the length (in cm) of DE is:	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
11.	If triangles ABC and DEF are similar and AB=4 cm, DE=6 cm, EF=9 cm and FD=12 cm,	1
	(A) 22 cm (B) 20 cm (C) 21 cm (D) 18 cm	
12	(A) 22 cm (B) 20 cm (C) 21 cm (D) 10 cm A girl calculates that the probability of her winning the first prize in a lottery is 0.08. If	1
14.	6000 tickets are sold, how many tickets has she bought?	1
	(A) 40 (B) 240 (C) 480 (D) 750	
13.	For a frequency distribution, mean, median and mode are connected by the relation	1
	(a)mode = 3 mean - 2 median (b) mode = 2 median - 3 mean	
	(c) mode = 3 median - 2 mean (d) mode = 3 median + 2 mean	

14.	The minute hand of a clock is 7 cm long. Find the area of the face of the clock	1
	described by minute hand in 15 minutes.	
	a. 154 Sq cm (b)38.5 Sq cm (c)105 Sq cm (d)77 Sq cm	
15.	If the perimeter and the area of a circle are numerically equal, then the radius of the circle	1
	is	
	(A) 2 units (B) π units (C) 4 units (D) 7 units	
16.	Two identical solid cubes of side a are joined end to end. Then the total surface area of the	1
	resulting cuboid is	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
17.	The pair of equations $y = 0$ and $y = -7$ has:	1
10	(A) one solution (B) two solutions (C) infinitely many solutions (D) no solution	
18.	$3 \sin A - \cos A = 0$ and $0^{\circ} < A < 90^{\circ}$, then the value of A is	1
10	DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed	1
19.	by a statement of Reason (R). Choose the correct option	
	Statement A (Assertion): $\sin 45^{\circ} - \cos 45^{\circ}$	
	Statement R (Regson) : $\sin A = \cos A$ for all values of A	
	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of	
	assertion (A)	
	(b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation	
	of assertion (A)	
	(c) Assertion (A) is true but reason(R) is false.	
	(d) Assertion (A) is false but reason(R) is true.	
20.	Statement A (Assertion): For any two positive integers p and q, HCF (p, q)	1
	\times LCM (p, q) = p \times q	
	Statement R(Reason) : If the HCF of two numbers is 5 and their product is 150, then	
	their LCM is 30.	
	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of	
	assertion (A)	
	(b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation	
	of assertion (A)	
	(c) Assertion (A) is true but reason(R) is false.	
	(d) Assertion (A) is false but reason(R) is true.	
	SECTION -B	
	Solve $2x + 3y = 11$ and $2x - 4y = -24$. Hence find the value of 'm' for which $y = mx+c$.	
21.	OR	2
	Find the zeroes of the quadratic polynomial $x^2 + 7x + 10$, and verify the relationship	
	between the zeroes and the coefficients	
22.	Prove that the length of tangents of a circle from an exterior point is equal.	2
	D is a point on the side BC of a triangle ABC such that $\angle ADC = \angle BAC$. Show that $CA^2 =$	
23.	CB.CD	2
	OR E F	
	In the figure, DE OQ and DF OR, show that EF QR.	
24.	If $\sin A = 3/4$, Calculate $\cos A$ and $\tan A$.	2
	A chord of a circle of radius 10 cm subtends a right angle at the centre. Find the area of the	2
25.	corresponding:	
	(i) minor sector	
	(ii) major sector (Use $\pi = 3.14$).	

SECTION-C					
26.	Prove that $3 + 2\sqrt{5}$ is irrational.	3			
27.	Find the roots of the following equations: $x + 1/x=2$, $x \neq 0$	3			
	A train travels 360 km at a uniform speed. If the speed had been 5 km/h more, it would have taken				
	1 hour less for the same journey. Find the speed of the train.				
28.	A quadrilateral ABCD is drawn to circumscribe a circle. Prove that $AB + CD = AD + BC$	3			
29.	Find a quadratic polynomial whose zeroes are reciprocals of the zeroes of the polynomial $f(x) = ax^2 + bx + c$, $a \neq 0$, $c \neq 0$.	3			
30.	Prove the following identities, where the angles involved are acute angles for which the				
000	expressions are defined	3			
	$1+\sin A1-\sin A = \sec A + \tan A$				
	$\frac{\mathbf{OR}}{(\cos \alpha \Delta \sin \Delta)(\sin \Delta - \cos \Delta) - 1/(\tan \Delta + \cot \Delta)}$				
	A box contains 5 red marbles 8 white marbles and 4 green marbles. One marble is taken				
31.	out of the box at random. What is the probability that the marble taken out will be	3			
	(i) red?				
	(ii) white?				
	(iii) not green?				
	SECTION-D				
	The altitude of a right triangle is 7 cm less than its base. If the hypotenuse is 13cm, find	5			
32.	the other two sides.				
33.	A vessel is in the form of an inverted cone. Its height is 8 cm and the radius of its top, which is open, is 5 cm. It is filled with water up to the brim. When lead shots, each of which is a sphere of radius 0.5 cm are	5			
	dropped into the vessel, one-fourth of the water flows out. Find the number of lead shots dropped in the vessel.	5			
	OR				
	A Gulah jamun contains sugar sugun un to about 20% of its volume. Find				
	approvimately how much syrup would be found in 45 Gulab jamuns, each				
	shaped like a cylinder with two hemispherical ends with length 5 cm and				
	diameter 2.8 cm (see figure)				
	Fig. 13.15				
34.	The following table shows the ages of the patients admitted in a hospital during a year:	5			
	Age (years) 5-15 15-25 25-35 35-45 45-55 55-65				
	No. of patients 6 11 21 23 14 5				
25	Find the mode and the mean of the data given above. Sides AB and AC and median AD of a triangle ABC are respectively proportional to sides.				
35.	PO and PR and median PM of another triangle POR	5			
	Show that $\triangle ABC \sim \triangle PQR$.	C			
	OR				
	State and prove Basic Proportionality Theorem				
	SECTION-E				
36.	200 logs are stacked in the following manner: 20 logs in the bottom row, 19 in the next				
	row, 18 in the row next to it and so on.	1+2+1			
	NY Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y				
	LEEE EEEEEEEEEEEEEE				

_			
		i)Using the given information write an arithmetic progression.	
		ii) In how many rows are the 200 logs placed?	
		If 209 logs are stacked in the same manner:20 logs in the bottom, 19 in the next row, 18 in	
		the row next to it and so on, then in how many rows are the 209 logs placed?	
		iii.)How many logs are in the top row?	
F	37	To conduct Sports Day activities in your rectangular shaped school ground ABCD lines have	
	57.	been drawn with chalk nowder at a distance of 1 m each 100 flower nots have been placed at a	1.1.2
		distance of 1 m from each other along AD, as shown in given	1+1+2
		distance of 1 m from each other along AD, as shown in given	
		figure below. Niharika runs 1/4 th the distance AD on the 2nd line and posts a green flag. Preet	
		runs 1/5 th distance AD on the eighth line and posts a red flag.	
		DC	
		-+	
		——————————————————————————————————————	
		₩	
		₩ 	
		$\overline{\mathfrak{T}}^2$	
		====1	
		A	
		1 2 3 4 5 6 7 8 9 10	
		(1) Coordinate if Niberika?	
		(1) Coordinate if Pract 2	
		(2) Coordinate if Preel?	
		(3) If Rashmi has to post a blue flag exactly halfway between the line segment joining the two	
		flags, where should she post her flag?	
		Or	
		Find the distance between Preet and Niharika?	
		A hunter found a tall tower inside a dense forest. He was planning to climb the tower and	
	•	noticed that the angle of depression from the top of tower was 40° and the height of the tower was	1.1.2
	38.	A5 m His fallow colleague however, said that the angle of depression is actually 10 lass than what	1+1+4
		45 minutes have weekeen and have a second the new angle of depression is actually 10 less than what	
		the numer has measured keeping into account the new angle of depression, answer the following	
		questions.	
		i)What is the new angle of elevation to the top of the tower?	
		ii)If the height of the tower decreases, will the angle of T	
		depression increase or decrease ?	
		iii)What is the new distance of the hunter from the base of	
		Or	
		What is the new distance between Hunter and top of	
		tower?	
1			1