CHAPTER 07 COORDINATE GEOMETRY

ASSIGNMENT 07

SUBJECT: MATHEMATICS				MAX. MARKS: 40	
Gener (i). (ii). (iii). (iii). (iii).	Section A comp each. Section C marks each and	e compulsory. per contains 20 question rises of 10 MCQs of 1 comprises of 3 question Section E comprises of	ns divided into five Sections A mark each. Section B comprise of 3 marks each. Section D f 2 Case Study Based Question	ses of 4 questions of 2 marks comprises of 1 question of 5	
. ,	There is no over Use of Calculate	all choice. ors is not permitted			
			ECTION – A to 10 carry 1 mark each.		
	the distance bet) 4 only		and (1, 0) is 5 units, then the (c) –4 only	value of p is (d) 0	
	•	(4, -1) and $(6, -7)$ are gle (b) equilateral trian		(d) none of these	
	AOBC is a rectangle whose three vertices are $A(0, 3)$, $O(0, 0)$ and $B(5, 0)$. The length of its iagonal is				
) 5	(b) 3	(c) $\sqrt{34}$	(d) 4	
	ne perimeter of	a triangle with vertices (b) 12	(0, 4), (0, 0) and (3, 0) is (c) 11	(d) $7 + \sqrt{5}$	
(a)) 1: 2	(b) 3:4	n of (2, -3) and (5, 6) is: (c) 1: 3	(d) 1: 5	
		mid-point of the line s	segment joining the points Q ((-6, 5) and R (-2, 3), then	
	e value of a is) –4	(b) -12	(c) 12	(d) -6	
	P(2, p) is the malue of p .	id-point of the line seg	ment joining the points A(6,	-5) and B(-2, 11), find the	
) 5	(b) 2	(c) 3	(d) 4	
	Find the value of k if P(4, -2) is the mid-point of the line segment joining the points A(5, B($-k$, -7).				
	$(-\kappa, -\tau)$.	(b) 2	(c) 3	(d) 5	
n the eason	e following que n (R). Mark th oth assertion (A)	estions 9 and 10, a state correct choice as: and reason (R) are true	natement of assertion (A) is for an area and reason (R) is the correct	` ,	

(c) Assertion (A) is true but reason (R) is false.(d) Assertion (A) is false but reason (R) is true.

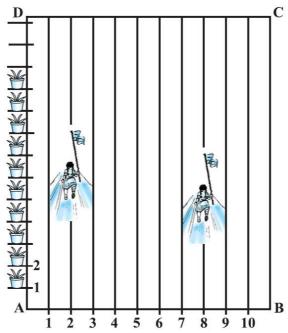
- **9.** Assertion (A): The value of y is 3, if the distance between the points P(2, -3) and Q(10, y) is 10. **Reason (R):** Distance between two points is given by $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
- **10.** Assertion (A): The point (-1, 6) divides the line segment joining the points (-3, 10) and (6, -8)in the ratio 2 : 7 internally.

Reason (R): Given three points, i.e. A, B, C form an equilateral triangle, then AB = BC = AC.

SECTION – B Questions 11 to 14 carry 2 marks each.

- 11. Find the point on y-axis which is equidistant from the points (5, -2) and (-3, 2).
- 12. The centre of a circle is $(2\alpha 1, 7)$ and it passes through the point (-3, -1). If the diameter of the circle is 20 units, then find the value of α .
- 13. Points A(3, 1), B(5, 1), C(a, b) and D(4, 3) are vertices of a parallelogram ABCD. Find the values of a and b.
- **14.** If the point C (-1, 2) divides the line segment AB in the ratio 3:4, where the coordinates of A are (2, 5), find the coordinates of B.

$\frac{SECTION - C}{\text{Questions 15 to 17 carry 3 marks each.}}$


- 15. Show that the points A(1, 2), B(5, 4), C(3, 8) and D(-1, 6) are the vertices of a square.
- **16.** Point P divides the line segment joining the points A(2, 1) and B(5, -8) such that $\frac{AP}{AB} = \frac{1}{3}$. If P lies on the line 2x - y + k = 0, find the value of k.
- 17. If point $\left(\frac{1}{2},y\right)$ lies on the line segment joining the points A(3, -5) and B(-7, 9), then find the ratio in which P divides AB. Also find the value of y.

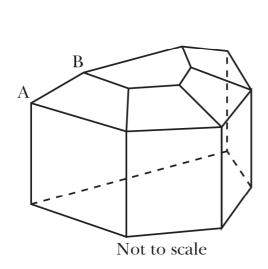
$\frac{\underline{SECTION} - \underline{D}}{\text{Questions 18 carry 5 marks.}}$

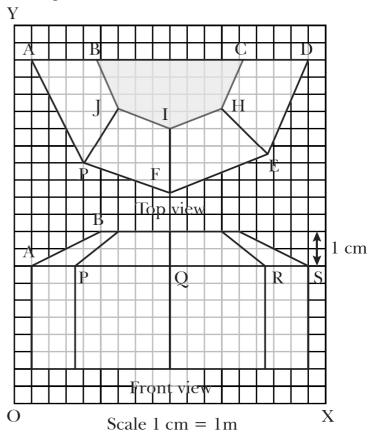
18. Find the vertices of a triangle, the mid-points of whose sides are (3, 1), (5, 6) and (-3, 2).

<u>SECTION – E (Case Study Based Questions)</u> Questions 19 to 20 carry 4 marks each.

19. In order to conduct sports day activities in your school, lines have been drawn with chalk powder at a distance of 1 m each in a rectangular shaped ground ABCD. 100 flower pots have been placed at the distance of 1 m from each other along AD, as shown in the following figure. Niharika runs $(\frac{1}{4})$ th distance AD on the 2nd line and posts a green Flag. Preet runs $(\frac{1}{5})$ th distance AD on the eighth line and posts are red flags. Taking A as the origin AB along x-axis and AD along y-axis, answer the following questions:

(i) Find the coordinates of the green flag.


(1)


(ii) Find the distance between the two flags.

- (1)
- (iii) If Rashmi has to post a blue flag exactly halfway between the line segment joining the two flags, where should she post her flag? (2)

OR

- (iii) If Joy has to post a flag at one fourth distance from the green flag, in the line segment joining the green and red flags, then where should he post his flag? (2)
- **20.** The diagrams show the plans for a sun room. It will be built onto the wall of a house. The four walls of the sunroom are square clear glass panels. The roof is made using
 - Four clear glass panels, trapezium in shape, all the same size
 - One tinted glass panel, half a regular octagon in shape

Refer to Top View for (i) only: (i) Find the mid-point of the segment joining the points J (6, 17) and I (9, 16).	
	(1)
Refer to Front View for (ii) to (iii):	(1)
(ii) Find the distance between the points A and S.	(1)
(iii) Find the co-ordinates of the point which divides the line segment joining the	e points A ar
in the ratio 1:3 internally.	(2)
OR	1 1
(iii) If a point (x,y) is equidistant from the $Q(9,8)$ and $S(17,8)$, then find the regard y	
and y.	(2)
