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Abstract

This paper is mainly focussed on the construction of smaller size matrices for
two dimensional Cellular Automata (CA) rules. This reduction in the dimension
of rule matrices is small and simple and therefore takes less time to get the
successor state of a problem matrix (or CA configuration). Therefore, studying
the behavior of CA rules using various properties of matrices are also becomes
easy because of its smaller dimension.
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1 Introduction

In 2-D rectangular CA as shown in Figure-1 also referred as Moore neighborhood,

the next state of a cell is governed by the present status of itself and the states of

eight cells lying in its closest proximity. Such relationships among these nine cells

are denoted by 512 linear rules and easily reckoned by EX-OR (⊕) operation only

[1, 2, 3, and 5].

64 128 256

32 1 2

16 8 4

Fig. 1. Rectangular structure and its nine fundamental rules
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The central box represents the cell being considered and all other boxes represent the

eight nearest neighbors of that cell. The number within each box represents the rule

number characterizing the dependency of the cell on that particular neighbor only.

These nine rules are called fundamental rules. In case the cell has dependency on two

or more neighboring cells, the rule number will be the arithmetic sum of the numbers

of the relevant cells. The number of such linear rules is 29 = 512 which includes rule

characterizing no dependency. These rules are denoted by Rule0, Rule1, ..., Rule511.

In [1, 2, 3, and 5] all these rules are characterized by matrices and denoted by Mi i.e.,

the Rule matrix for Rulei, for i = 0, 1, 2, 3, ..., 511. That is if P is a problem matrix

of dimension (m× n), then the dimension of Mi is (mn×mn). The algorithm used

to obtain the successor matrix P
′
m×n from the problem matrix Pm×n is the following:

Step 1 : (P )m×n −→ (PCol)mn×1

Step 2 : (Mi)mn×mn(PCol)mn×1 −→ (P
′
Col)mn×1

Step 3 : (P
′
Col)mn×1 −→ (P

′
)m×n

The above algorithm says that a 2-D problem matrix P arranged in a column vector

PCol when multiplied by a rule matrix Mi gives a new column vector P
′
Col from which

the successor state of the CA; P
′

is obtained. The construction procedure uses (mn)

number of basis matrices of size equal to the size of the problem matrix i.e., (m×n).

A linear CA rule is applied to each basis matrix resulting (mn) number of output

matrices using which a rule matrix of (mn×mn) dimension can be constructed. So,

with increase in the dimension of a problem matrix the dimension of rule matrix

increases. If size of the problem matrix is large then the dimension of the rule

matrix becomes large enough to visualize. Because of their incompatible dimensions

it is also not feasible to multiply the rule matrix directly to the problem matrix to

get the desired outcome. Further studying the behavior of CA rules using various

properties of matrices such as rank, nullity, eigen vectors etc. is also difficult due

to its large dimension. The above construction algorithm is complicated, time and

space consuming. In this paper we have constructed a matrix for Rule2 and using

it the matrices for other non-trivial linear CA rules are obtained.
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The dimension of Rule2 matrix is much less than (mn × mn) and therefore it is

simple enough for our easy manipulation and also compatible to multiply directly

with a problem matrix P giving its successor matrix P
′
.

2 Proposed work

The matrices for the trivial linear rules Rule0 and Rule1 are the null matrix

and the identity matrix respectively having dimension same as the dimension of the

problem matrix P i.e, (m× n). The construction methods for finding all 510 linear

rule matrices in null boundary condition are shown using some theorems as follows.

Theorem 1 (Matrix construction for Rule2)

If M = (mij)n×n is the binary matrix for Rule2 such that Pm×nMn×n = P
′
m×n then

mij =

{
1 if i = j + 1 and 1 ≤ j ≤ (n− 1),

0 Otherwise.

Proof Let the problem matrix Pm×n = (pij)m×n for 1 ≤ i ≤ m and 1 ≤ j ≤ n,

pijε{0, 1}. As Rule2 is the translation of all cells towards left [3] so, when Rule2 is

applied to the problem matrix Pm×n then the successor matrix is P ′m×n = (p
′
ij)m×n

where

p
′
ij =

{
0 if j = n & 1 ≤ i ≤ m,

pi,j+1 if 1 ≤ j ≤ (n− 1) & 1 ≤ i ≤ m.
(2.1)

Consider a matrix M = (mij)n×n for 1 ≤ j ≤ n & 1 ≤ i ≤ n, when multiplied from

the right hand side of Pm×n gives P ′m×n.

That is, Pm×n ×Mn×n = (P
′
)m×n. This implies

p11 p12 . . . p1n

p21 p22 . . . p2n

. . . . . . . . . . . .
pm1 pm2 . . . pmn


m×n


m11 . . . m1n

m21 . . . m2n

. . . . . . . . .
mn1 . . . mnn


n×n

=


p12 . . . p1n 0
p22 . . . p2n 0
. . . . . . . . . . . .
pm2 . . . pmn 0


m×n

(2.2)
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This gives the system of linear equations as:

p11 ×m11 ⊕ p12 ×m21 ⊕ · · · ⊕ p1n ×mn1 = p12 (2.3)

p21 ×m11 ⊕ p22 ×m21 ⊕ · · · ⊕ p2n ×mn1 = p22 (2.4)

. . . . . . . . .

pm1 ×m1n ⊕ pm2 ×m2n ⊕ · · · ⊕ pmn ×mnn = 0 (2.5)

The solution of above system of linear equation is

mij =

{
1 if i = j + 1 & 1 ≤ j ≤ (n− 1),

0 Otherwise.

Hence proved.

Theorem 2 (Matrix construction for other fundamental rules from M)

The successor matrix of seven fundamental 2-D rectangular CA rules are obtained

as follows

1. For Rule32, Pm×n ×MT
n×n = P

′
m×n

2. For Rule8, MT
m×m × Pm×n = P

′
m×n

3. For Rule128, Mm×m × Pm×n = P
′
m×n

4. For Rule4, MT
m×m × Pm×n ×Mn×n = P

′
m×n

5. For Rule64, Mm×m × Pm×n ×MT
n×n = P

′
m×n

6. For Rule16, MT
m×m × Pm×n ×MT

n×n = P
′
m×n

7. For Rule256, Mm×m × Pm×n ×Mn×n = P
′
m×n

Proof : Proof of 1, 2, and 3 are similar to Theorem 1 and according to the

Parallelogram law of vector addition, Rule4 is the resultant vector of the vectors

returned from Rule2 and Rule8. Hence the result is the proof of 4. Similar proofs

are for 5, 6, and 7.

Fig-1 can be modified using the Theorem 1 & 2 which is shown in Fig-2 as follows.

MPMT MP MPM

PMT IP/PI PM

MTPMT MTP MTPM
Fig. 2. Pictorial representation of Theorem 1 and Theorem 2
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Theorem 3 The successor matrices of 502, 2-D rectangular linear CA rules are

obtained by taking EX-OR operation of some or all of the fundamental rule matrices.

Example 1

For Rule3 : P
′

= PM ⊕ PI.

For Rule5 : P
′

= MTPM ⊕ IP .

For Rule10 : P
′

= MTP ⊕ PM .

For Rule30 : P
′

= MTPMT ⊕MTP ⊕MTPM ⊕ PM .

Theorem 4 (Non-existence theorem)

1. No matrix exist for Rule2 and Rule32 when multiplied from the left side of Pm×n

gives its corresponding successor matrix P
′
m×n.

2. No right hand side matrix exist for Rule8 and Rule128 when multiplied with

problem matrix Pm×n gives its successor matrix P
′
m×n.

3. It is impossible to find a single matrix M for Rule4, Rule16, Rule64 and Rule256

such that after multiplication (either left side or right side) with a problem matrix

Pm×n gives its corresponding successor matrix P
′
m×n.

Proof : 1. Let the problem matrix Pm×n = (pij)m×n for 1 ≤ i ≤ m and 1 ≤ j ≤ n,

pijε{0, 1} and P ′m×n is the successor state matrix of Pm×n when Rule2 applied once.

Assume that there exits a rule matrix M = (mij)m×m for 1 ≤ j ≤ m & 1 ≤ i ≤ m.

Such that

Mm×m × Pm×n = (P
′
)m×n (2.6)

Equation (2.6) gives a system of linear equations as follows:

m11 × p11 ⊕m12 × p21 ⊕ · · · ⊕mm1 × pm1 = p12 (2.7)

m21 × p11 ⊕m22 × p21 ⊕ · · · ⊕m2m × pm1 = p22 (2.8)

. . . . . . . . .

mm1 × p1n ⊕mm2 × p2n ⊕ · · · ⊕mmm × pmn = 0 (2.9)
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In equation (2.7), there is no term containing p12 in the left hand side. So it is

impossible to find some value of mij , i ≤ j ≤ m in the left hand side of equation

(2.7) that gives p12. Similarly for other equations, one will never get values of mij ’s

that satisfy the above system linear equations. So, a general matrix does not exist

that satisfy the equation (2.6). Hence proved.

Similar proof for Rule32, as vector returned from Rule32 is opposite to the vector

returned from Rule2.

2. Since vectors returned from Rule8 and Rule128 are perpendicular to Rule2.

Hence, Proof is similar to (1), Theorem 4.

3. [By method of construction] Let Pm×n be a problem matrix and we need to find

M such that it gives its successor matrix P
′
m×n after Rule4 is applied on Pm×n.

That is

Mm×m × Pm×n = P
′
m×n (2.10)

which implies

m11 × p11 ⊕m12 × p21 ⊕ · · · ⊕m1m × pm1 = p22 (2.11)

. . . . . . . . .

mm1 × p1n ⊕mm2 × p2n ⊕ · · · ⊕mmm × pmn = 0 (2.12)

Since p22 is not at all present in the left hand side of equation (2.11). So, we can’t

get p22 from equation (2.11). Similarly for other equations also we can’t get their

corresponding p
′
ij elements.

Similarly, if we multiply M with P on right hand side, we also get a set of linear

equations having no solutions. Hence it is impossible to construct a matrix M that

satisfy equation (2.10).

Since, Rule16, Rule64 and Rule256 behave similar toRule4. Similar proof also applies

to these rules.

3 Efficiency

If the problem matrix is Pm×n whose successor state matrix is P
′
m×n after Rulei

is applied once i.e., Pm×n
Rulei−→ P

′
m×n.
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According to the Rule Matrix theory used earlier [1, 2], the dimension of rule matrix

Mi is (mn×mn) and the problem and its successor output matrix have dimension

(mn× 1). And they are related to each other by the following equation

Mmn×mn × Pmn×1 = P
′
mn×1 (3.1)

Thus using earlier theory, the space and the time complexities to get the successor

state of a problem matrix Pm×n is shown in Table 4.1.

Table 4.1
Space-complexity Time-complexity Rectangular CA rules

Earlier work Ref. [1, 2] O(m2n2) O(m2n2 + 2mn) All 512 rules

But using the construction procedure discussed in Section 2, a matrix is multiplied

with the problem matrix from the left side or from the right side or from both sides

to get successor state matrix. Hence both the space and time complexities in this

case is different for different CA rules as shown in Table 4.2.

Table 4.2
Space Complexity Time Complexity Rectangular CA rules

Left side O(n2) O(mn2) 0, 1, 2, 3, 32, 33, 34 & 35

Right side O(m2) O(m2n) 0, 1, 8, 9, 128, 129, 136 & 137

Both side O(m2 + n2) O(mn(m+ n)) All other 498 rules

Comparing above tables, one can observe that both the space and time complexities

are very less in Table 4.2 than Table 4.1. For a square matrix (i.e., when m = n) both

the space and the time complexity is O(n4) in Table 4.1 but in this work (Table 4.2)

the space complexity is O(n2) and the time complexity is O(n3). Since the problem

matrix may be in any dimension, so our proposed theory is much efficient than the

earlier work [1, 2, and 5].

4 Conclusion

In this paper, the matrix for Rule2 is constructed whose dimension is same as

that of the problem matrix and using only this matrix with the help of an identity

matrix, the output of all other 511 2-D uniform linear CA rules in nine-neighborhood

are obtained. The efficiency of the proposed method to find the successor state of a

CA rule is compared with an earlier work and found better.
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